Appearance
SQL INNER JOIN
INNER JOIN 是 SQL 中最重要、最常用的表连接形式,只有当连接的两个或者多个表中都存在满足条件的记录时,才返回行。
SQL INNER JOIN 子句将 table1 和 table2 中的每一条记录进行比较,以找到满足条件的所有记录,然后将每一对满足条件的记录的字段值,合并为一条新的结果行。
INNER JOIN 是默认的表连接方式。当不加任何修饰性的关键字,只写 JOIN 时,默认就是 INNER JOIN 连接。
语法
INNER JOIN 的基本语法如下:
sql
SELECT table1.column1, table2.column2...
FROM table1
INNER JOIN table2
ON table1.common_column1 = table2.common_column2;
table1.common_column1 = table2.common_column2 是连接条件,只有满足此条件的记录才会合并为一行。
以上 SQL 语句将产生 table1 和 table2 的交集,只有 table1 和 table2 中匹配的行才被返回,如下图所示:
示例
现在有如下所示的两个表,分别是客户表和订单表。
表1:CUSTOMERS 表
+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |
| 2 | Khilan | 25 | Delhi | 1500.00 |
| 3 | kaushik | 23 | Kota | 2000.00 |
| 4 | Chaitali | 25 | Mumbai | 6500.00 |
| 5 | Hardik | 27 | Bhopal | 8500.00 |
| 6 | Komal | 22 | MP | 4500.00 |
| 7 | Muffy | 24 | Indore | 10000.00 |
+----+----------+-----+-----------+----------+
表2:ORDERS 表
+-----+---------------------+-------------+--------+
| OID | DATE | CUSTOMER_ID | AMOUNT |
+-----+---------------------+-------------+--------+
| 102 | 2009-10-08 00:00:00 | 3 | 3000 |
| 100 | 2009-10-08 00:00:00 | 3 | 1500 |
| 101 | 2009-11-20 00:00:00 | 2 | 1560 |
| 103 | 2008-05-20 00:00:00 | 4 | 2060 |
+-----+---------------------+-------------+--------+
现在,让我们使用 INNER JOIN 连接这两个表,如下所示:
sql
SQL> SELECT ID, NAME, AMOUNT, DATE
FROM CUSTOMERS
INNER JOIN ORDERS
ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;
执行结果:
+----+----------+--------+---------------------+
| ID | NAME | AMOUNT | DATE |
+----+----------+--------+---------------------+
| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |
| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |
| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |
| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |
+----+----------+--------+---------------------+
如果您不希望选取表的所有记录,也可以加上 WHERE 子句,如下所示:
sql
SQL> SELECT ID, NAME, AMOUNT, DATE
FROM CUSTOMERS
INNER JOIN ORDERS
ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;
WHERE AMOUNT >1515
ORDER BY AMOUNT;
执行结果:
+----+----------+--------+---------------------+
| ID | NAME | AMOUNT | DATE |
+----+----------+--------+---------------------+
| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |
| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |
| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |
+----+----------+--------+---------------------+